
Eletron-helium sattering in the S-wave model using exterior omplex salingDaniel A. Horner,1, � C. William MCurdy,2, 3, 1, y and Thomas N. Resigno2, z1Department of Chemistry, University of California, Berkeley, California 947202Lawrene Berkeley National Laboratory, Chemial Sienes, Berkeley, California 947203Department of Applied Siene, University of California, Davis, California 95616(Dated: June 16, 2004)Eletron-impat exitation and ionization of helium is studied in the S-wave model. The problemis treated in full dimensionality using a time-dependent formulation of the exterior omplex salingmethod that does not involve the solution of large linear systems of equations. We disuss thesteps that must be taken to ompute stable ionization amplitudes. We present total exitation,total ionization and single di�erential ross setions from the ground and n = 2 exited states andompare our results with those obtained by others using a frozen-ore model.I. INTRODUCTIONSine the early years of quantum mehanis and thedevelopment of sattering theory, an aurate desrip-tion of the orrelated motion of three unbound partilesinterating via Coulomb fores has been a diÆult prob-lem to treat theoretially. Indeed, this problem was onlyredued to omputation in the last deade [1℄. The dif-�ulty stems from the long-range nature of the Coulombpotential whih introdues a number of formal and pra-tial ompliations. Although the formal theory of e-Hionization was developed in the 1960's by Peterkop [2℄and by Rudge and Seaton [3, 4℄, it has not provided apratial path to omputation. The asymptoti form ofthe wave funtion they derived is valid only in spei�and limited geometries of the interating partiles andhas proved to be too ompliated to use as a boundaryondition for solving the time-independent Shr�odingerequation. Consequently, muh of the work on eletron-impat ionization has been arried out using perturba-tive, distorted-wave type methods or with lose-ouplingapproahes that apply approximate two-body boundaryonditions.A pratial path to aurate omputation at low olli-sion energies was only fully realized in the past few years.The key to overoming the diÆulties posed by the formaltheory has been to formulate methods that do not relyon expliitly enforing the boundary onditions for three-body Coulomb breakup. Several theoretial methods anbe mentioned in this ontext. One suh approah is the\time-dependent lose-oupling" method developed byPindzola, Shultz, Robiheaux and oworkers [5, 6℄. Inthat approah, a wave paket is �red at the target atomand the time-dependent Shr�odinger equation desribingits dynamis is solved in a lose-oupling formulation.Asymptoti boundary onditions are avoided sine thetime-dependent Shr�odinger equation is solved as an ini-�dahorner�lbl.govywmurdy�lbl.govztnresigno�lbl.gov

tial value problem. Another suessful method, whihhas been applied to the atomi double photoionizationproblem, is the hyperspherial R-matrix method withsemi-lassial outgoing waves [7℄. In that approah, thetime-independent Shr�odinger equation is solved withoutdetailed spei�ation of three-body Coulomb boundaryonditions by merging two di�erent approahes: an R-matrix treatment of the entire system in the viinity ofthe nuleus along with a semilassial desription of theevolution of the system in the asymptoti region. Ex-terior omplex saling (ECS) [8℄ avoids the expliit en-forement of boundary onditions entirely and has beensuessful in solving all aspets of the prototypial three-body Coulomb problem, eletron-impat ionization ofatomi hydrogen, to arbitrary auray [9, 10℄.Most of the urrently suessful methods have beenapplied to study eletron-impat ionization of multi-eletron atoms by treating all but one ative target ele-tron in a frozen-ore approximation, whih redues theproblem to an e�etive three-body Coulomb system. Thequestion we want to address here is whether the ECSmethod o�ers a pratial approah to studying ioniza-tion of atoms with two ative eletrons. The method,as originally applied, involves solving large, sparse sys-tems of linear equations. Extending this implementation,diretly, to three eletrons leads to linear systems thatare extremely large and prohibitively expensive to solve.We have addressed that issue previously [11℄ by showinghow the ECS method ould be ast in a time-dependentformulation that sales more favorably with the numberof eletrons than the original time-independent formula-tion. The time-dependent ECS (TD-ECS) method wassuessfully applied to a problem involving four partilesinterating via short range potentials.Here we take the �rst steps toward applying ECS to thefull eletron-helium system. In this paper we extend thetime-dependent ECS method to a system of four hargedpartiles and onsider the S-wave model of e�-He ion-ization. The S-wave model provides a distillation of thefull, 9-dimensional, problem into a system involving justthree radial oordinates. While the problem we onsiderhere is a model, it has the omplexity of a true four-body Coulomb problem - involving long-range fores and



2an in�nite number of two-body exitation hannels - butsimpli�es the full problem by treating only states withzero angular momentum.While the S-wave (or Temkin-Poet) model for e�-Hionization has been a testbed for developing numerialapproahes for studying ionization, the orrespondingmodel for eletron-helium sattering and ionization hasreeived little attention in the literature, with most of thee�ort going towards solving the full eletron-helium sys-tem under a number of approximations. Pindzola et al.[12℄ have used the time-dependent wave paket methodto ompute total ross setions with the S-wave model inthe ontext of double ionization at high energies. Thishas been the only previous alulation to treat all of theeletrons on the same footing, thus solving a true three-eletron ionization problem. Plottke et al., using theonvergent lose-oupling (CCC) method [13℄, have alsoreported results for this problem by freezing one of theeletrons in the target. Under that approximation, themodel is e�etively equivalent to a two-eletron system.The method of exterior omplex saling is implementedhere in 3D with a ombined �nite element-disrete vari-able representation (FEM-DVR)[14℄. The FEM-DVRbasis provides a numerial grid on whih to perform thealulation, as well as an underlying expansion basis thatallows the omputed wave funtions to be evaluated asa ontinuous funtion of the oordinates. ECS providesa method for omputing a numerial representation ofthe physial sattering wave funtion on a �nite volumeby imposing only simple, outgoing-wave boundary on-ditions. Beause of the simpli�ed boundary onditionsemployed, the alulations do not automatially providethe desired sattering information. For the three-bodyproblem, we have previously shown how to formulate asurfae integral expression for the ionization amplitudethat provides numerially stable and aurate ross se-tions on a �nite volume [10, 15, 16℄. With multi-eletrontargets, there are additional diÆulties that arise whihompliate the extration of ionization amplitudes. Themethod we have devised for addressing these omplia-tions will be desribed as well.The outline of this paper is as follows. The theory ispresented in Setion II. We begin with a desription ofthe TD-ECS method for omputing the sattered wavefuntion. We then desribe how this wave funtion is usedin alulating amplitudes for exitation and ionization.The formal results are then applied in the ase of the S-wave model. In Setion III we present numerial resultsfor exitation as well as total and di�erential ionizationross setions. In Setion IV we summarize and disussour �ndings. II. THEORYOur treatment of this problem involves two main parts:the omputation of the three-eletron sattering wavefuntion and the extration of physial ross setions.

A. Calulation of the sattered wave funtionThe starting point for all ECS appliations is an equa-tion that determines the purely outgoing part of the fullwave funtion. To that end, we begin by partitioning thefull wave funtion 	+ into two parts:	+ = �0 +	SC; (1)where the unperturbed funtion �0 spei�es the initialonditions and the sattered wave 	SC ontains onlyoutgoing waves. Substituting Eq. (1) into the time-independent Shr�odinger equation gives a driven equa-tion for the sattered wave:(E �H)	SC = (H �E)�0: (2)Eq. (2) must be solved with purely outgoing boundaryonditions; the sattered wave 	SC arries informationabout all the dynamial proesses of interest.The ECS method allows one to determine the sat-tered wave on a �nite volume without having to detailits expliit asymptoti form. The method uses an ana-lyti transformation where the eletron oordinates arerotated into the omplex plane beyond some point R0.This is aomplished by replaing eah radial eletronoordinate r with a saled oordinate R(r), de�ned byR(r) = � r r < R0R0 + (r �R0)ei� r � R0: (3)Purely outgoing funtions deay on the omplex portionof the oordinate R(r). However, the funtion at dis-tanes less than R0 are una�eted by the saling. Thus,by requiring that solutions vanish at the origin and someappropriately large distane along the omplex ontour,we obtain a solution that is purely outgoing, and is ef-fetively equal to the physial wave funtion on the realportion of the grid. The \e�etively" quali�er reetsthe fat that the interation potentials on the r.h.s. ofEq. (2) must be trunated on the omplex portions ofthe ontour [1, 17℄. As R0 is inreased, the solution ap-proahes the exat physial sattered wave on the realportion of the grid. We note here that while the sat-tered wave is ontinuous along the ontour de�ned byR(r), its derivative is disontinuous at R0.In most of the previous appliations of ECS, Eq. (2)was solved by expanding the wave funtion on a gridusing an appropriate disretization method (�nite di�er-ene or �nite elements) and solving the resulting linearequations to obtain the sattered wave solution. How-ever, due to the poor saling with respet of the numberof partiles, even in the ase of three eletrons, the sizeof the linear systems beome very large and impratialto solve. Our strategy for irumventing this diÆulty isto reast the problem with an equivalent time-dependentformulation [11℄ that does not require us to solve largelinear systems and that sales favorably with inreasingpartile number.



3In the reformulated method, the sattered wave fun-tion is omputed as the Fourier transform of a time-dependent wavepaket,	SC = �i Z 10 eiEt�(t) dt; (4)with �(t) = e�iHt�(0): (5)The initial \wavepaket" is simply given by�(0) =�H(R(r1); R(r2) � � � )�E��0�R(r1); R(r2) � � � �:(6)This formulation follows from noting that the solution ofEq. (2) whih we seek an be formally written as	SC = G+�(0); (7)with G+ being the full Green's funtionG+ =�!0 (E �H + i�)�1=�!0 1i Z 10 ei(E+i�)te�iHt: (8)Beause we are using ECS, the wavepaket �(t) will limitto zero for large frig as t!1, so the +i� in Eq. (8) anbe dropped. Eq. (4) is thus formally equivalent to the so-lution of Eq. (2). Instead of solving large linear systems,it requires that we propagate �(0) on the ECS ontourin multiple dimensions for times suÆiently large to on-verge the Fourier transform that provides the numerialrepresentation of 	SC.We seek a method that sales well with partile num-ber and therefore one that does not involve solutions oflinear equations representing multiple dimensions at eahtime step. To that end, we employ a split operator ap-proximation [18℄ for the time propagation operator. TheHamiltonian for d partiles is �rst separated into one-two-body terms:H = dXi=1 h1(ri) + dXi>j=1 v2(ri; rj)� H1 + V2; (9)and the propagator is then approximated ase�iH�t � exp ��i��t2 �V2�� " dYi=1 e�ih1(ri)�t# exp ��i��t2 �V2� : (10)To approximate the one-body Hamiltonian terms, we usea seond-order Crank-Niolson propagator,e�ih1�t �(1 + ih1�t2 � h21�t212 )�1� (1� ih1�t2 � h21�t212 ): (11)

The saling properties of this propagator depend onthe representations of the operators, whih we have yetto speify. Earlier implementations of ECS used �nitedi�erene methods, but in the present work we employ,for eah radial eletron oordinate, the ombined �niteelement-disrete variable representation (FEM-DVR) in-trodued by Resigno and MCurdy [14℄. The DVRombines a high-order polynomial treatment of the ki-neti energy operator with the advantage of a diagonalrepresentation of any loal potential operator. For theDVR representation, we use a basis of so-alled \Lo-batto shape funtions" [19℄, whih are Lagrange inter-polating polynomials with mesh points derived from aGauss-Lobatto quadrature. Gauss-Lobatto quadrature issimilar to the more familiar Gauss-Legendre quadrature,with the di�erene that in Gauss-Lobatto quadrature twoof the points are onstrained to oinide with the spei-�ed end-points. Sine Gauss-Lobatto quadrature expli-itly inludes the end-points as quadrature points, it ispossible to ombine this partiular variety of DVR withthe �nite-element method, as outlined in ref. [14℄. More-over, by hoosing one of the element boundaries to oin-ide with the point R0 where the real and omplex partsof the ECS ontour join, the derivative disontinuity inthe wave funtion at R0 is handled exatly.With the FEM-DVR, matrix element omputation isgreatly simpli�ed ompared with other basis set methods.When the integrals are approximated using the underly-ing Gauss quadrature, the loal potential operators havea diagonal representation. Matrix elements of derivativeoperators, suh as the kineti energy, are not diagonal,but are given by simple analyti formulas. With FEM-DVR, the kineti energy operator has a bloked matrixstruture, where eah blok representing a partiular �-nite element is full, and the various bloks are onnetedby the end-point DVR funtions that join adjaent ele-ments [14℄. Thus the overall kineti energy matrix, whilenot diagonal, an be very sparse, depending on the num-ber of elements and order of quadrature used in eahelement.The eÆieny of the time-dependent formulation inmore than two dimensions beomes readily apparent withan FEM-DVR representation. Sine the matrix elementsof loal funtions are diagonal and the one body Hamil-tonian terms separate, the number of operations neededto evaluate the exponential propagators in Eq. (10) anbe easily estimated. Assume we have n grid points ineah of d dimensions. For one time step, eah opera-tion on the wave paket with exp(�iV2�t=2) requiresone multipliation per grid point, or of order nd opera-tions. The operator exp(�ih1�t) in eah dimension anbe represented by an n�n matrix (Eq. (11)) that need beomputed only one. Eah operation with exp(�ih1�t)involves a matrix multiply for one of the dimensions thathas to be done for eah point in the other dimensions,and thus requires of the order n2�nd�1 = nd+1 elemen-tary operations. The entire propagator thus requires oforder 2nd + dnd+1 � dnd+1 operations per time step. If



4we attempted to represent the time-independent drivenShr�odinger equation on the nd�nd grid, we would haveto solve a sparse set of linear equations for 	SC. If itera-tive methods were used, whih o�er the best saling withn, the e�ort required would sale no better than n2d. Thesaling advantage of the time-dependent approah imple-mented here is that of nd+1 versus n2d. For d = 3 andn = 150, whih is typially required in these alulations,that advantage is 5�108 vs. 1013 operations to perform.B. Extrating ross setionsThe formal and omputational advantage of ECS isthat it does not make referene to any spei� asymptotiboundary onditions other than the requirement that thesattered wave be purely outgoing. One the satteredwave has been alulated, we must deide how to extratthe detailed dynamial information it desribes. Onewould not normally view this as a major issue, sine inmost standard methods, the asymptoti boundary ondi-tions that de�ne the dynamial quantities of interest areused in the generation of the wave funtion. But in theECS method, what is obtained is a numerial representa-tion of a wave funtion that ontains information aboutall proesses that are allowed at a spei� total energy, asdetailed spei�ation of sattering boundary onditionsis avoided by design.A simple and straight-forward way to obtain the ion-ization ross setion is to ompute the quantum mehani-al ux through a surfae that lies inside the region wherethe oordinates are real. While this method was used inthe �rst suessful appliations of ECS to e-H ioniza-tion [9, 20℄, there are intrinsi problems with this ap-proah. The method requires fairly large grids sine thenumerially omputed quantities must be extrapolatedto in�nite grid size, where the ux an be related to thedi�erential ross setions for ionization. More serious isthe problem that the grids must be large enough to al-low the physial region inhabited only by the ionizationportion of the sattered wave to be distinguishable fromthe parts that desribe disrete two-body hannels. Therequirement that the ionization wave be \unovered" be-fore the asymptoti ux is alulated an require gridsthat extend well beyond the range where the interationpotentials are appreiable.The most pratial, and eonomial, approah to al-ulating both exitation and breakup ross setions is toformulate the problem in terms of integral expressionsfor the underlying sattering amplitudes [15℄. For dis-rete exitations in the present ase of a three-eletronradial problem, we an begin with the formal expressionfi!n = 2pkn 
�n(r1; r2) sin(knr3) jE �H1j	+� ; (12)where �n is a disrete target state and H1 is the unper-turbed Hamiltonian orresponding to the inident han-

nel arrangement, so that:(H1 �E)j�n(r1; r2) sin(knr3)i = 0: (13)It is to be understood that the matrix element in Eq. (12),and in all the expressions that follow, is arried out overa �nite volume de�ned by some hyperradius where theeletron oordinates are all real. We an then use Green'stheorem, along with Eq. (13), to express the amplitudeas a surfae integral:fi!n = 1pkn RS [�n(r1; r2) sin(knr3)r	+(r1; r2; r3)�	+(r1; r2; r3)r�n(r1; r2) sin(knr3)℄ � dŜ= 1pkn RS [�n(r1; r2) sin(knr3)r	SC(r1; r2; r3)�	SC(r1; r2; r3)r�n(r1; r2) sin(knr3)℄ � dŜ(14)where the replaement of 	+ by 	SC in the surfae in-tegral follows from an examination of the integrand ofEq. (14) on the surfae.The derivation of a workable formula for the ionizationamplitude requires some are. We prefae this disussionby noting that all of the matrix elements onsidered hereare presumed to be evaluated on a large but �nite volume,so we will employ the standard rearrangement theory forshort-ranged interations and not address any of the dif-�ulties posed by the formal theory of ionization. Theonnetion with the formal theory, and in partiular thequestion of the proper de�nition of the overall phase ofthe ionization amplitude, whih does not a�et any phys-ial ross setion, has been disussed at length elsewhereand will not be repeated here [16, 21℄.We have previously pointed out that, for a one-eletrontarget, the following expression for the breakup ampli-tude [15℄,f(k1; k2) = 2 hsin(k1r1) sin(k2r2) jE � T j	SCi ; (15)where T is the total kineti energy operator, while for-mally orret, does not prove to be useful in an atualnumerial alulation on a �nite volume. This failurean be traed to the ontribution of disrete two-bodyhannels in 	SC whih give rise to overlap terms thatproperly onverge to Dira Æ funtions only for in�nitevolumes. This ontamination of the ionization amplitudefrom bound states renders Eq. (15) useless on a �nitevolume. The solution to this problem is to employ a for-mally equivalent expression with distorted waves in the�nal state:f(k1; k2) = 2 h'k1'k2 jE � T � V1j	SCi ; (16)where V1 is the distorted wave potential orrespondingto the �nal state. In the e�-H ase, for example, wehoose the distorted waves to be Coulomb funtions withZ = 1 [16℄. Sine the Coulomb funtions are eigenfun-tions of the same Hamiltonian as the hydrogeni boundstates, orthogonality is realized on the �nite volume and



5the spurious ontributions to the breakup amplitude areeliminated.The natural extension of Eq. (16) to the present he-lium ase, for single ionization leaving the ion in the n-thexited state, would bef(k1; k2) = 2 h'n'k1'k2 jE � T � V1j	SCi : (17)But now the use of distorted waves alone annot om-pletely eliminate the ontamination of the ionizationamplitude by disrete exitation hannels, sine thereis generally no orthogonality relationship between thesingle-partile distorted waves and the exat two-partilebound states of the target. Nevertheless, we an stillahieve muh by hoosing the distorted wave potentialjudiiously. The exited states of the model S-wave he-lium atom, both singlet and triplet, are reasonably welldesribed by single-on�guration wave funtions of theform 1;3j'1s'nsj, where '1s is the 1s orbital of He+.The 'ns orbitals for the orresponding singlet and tripletstates are of ourse not idential, but they are reasonablysimilar. With these onsiderations in mind, we hoosethe distorted waves to be solutions of the triplet stati-exhange equation,(T � 2r + J1s �K1s � k2=2)'k = 0; (18)where J1s and K1s are the usual Coulomb and exhangeoperators onstruted with the He+ 1s orbital. Note thatthe He+ 1s orbital is an eigenfuntion of this equation, asare the triplet 'ns orbitals. This hoie therefore guar-antees approximate orthogonality between the distortedwaves and all the exited helium target states. It doesnot, however, eliminate ontamination of the breakupamplitude by the ground-state hannel, sine the neu-tral helium ground-state 1s orbital is very di�erent fromthe He+ 1s orbital.To address the problem of ontamination by the elastihannel, and to further improve on the presription foromputing a stable ionization amplitude, we employ thetehnique of \asymptoti subtration" whih we intro-dued in our earlier study of breakup with short-rangedpotentials [11℄. The idea is to try to remove the asymp-toti ontribution of the disrete two-body hannels tothe sattered wave before omputing the ionization am-plitude. Asymptotially, the sattered wave has the form	SC = 	ionSC +Xn �fi!npkn ��n(r1; r2)eiknr3 : (19)So by subtrating the sum that appears in Eq. (19) from	SC we an, in priniple, isolate, asymptotially, the pureionization portion of the sattered wave. The exitationamplitudes fi!n an be alulated using Eq. (12) or (14).There are of ourse an in�nite number of disrete two-body hannels, but on a �nite volume only a �nite num-ber of bound states an be supported.The ionization amplitude is thus evaluated by startingwith the expressionf(k1; k2) = 2 
'n'k1'k2 jE � T � V1j	ionSC� ; (20)

and using Green's theorem to onvert it to a surfae in-tegralf(k1; k2) = ZS �'n(r1)'k1 (r2)'k2(r3)r	ionSC(r1; r2; r3)�	ionSC(r1; r2; r3)r'n(r1)'k1(r2)'k2(r3)� � n̂ dS: (21)The use of the surfae integral form of the amplitude,whih only depends of the asymptoti part of the sat-tered wave, is now essential, sine asymptoti subtrationhanges the interior part of the sattered wave and makesthe volume integral representation of the amplitude in-valid. We have found that asymptoti subtration andthe orret hoie of distorted waves are both essential inomputing aurate ionization ross setions.C. S-Wave model of heliumAs we have mentioned, the S-wave model arises fromretaining only the �rst, l = 0, term in the angular mo-mentum expansion of the eletron repulsion potentials.The full Hamiltonian for the e�-He system in the S-wavemodel is H(r1; r2; r3) =T1 + T2 + T3 � 2r1 � 2r2 � 2r3+ 1r>(1; 2) + 1r>(1; 3) + 1r>(2; 3) ; (22)where r>(1; 2) = max(r1; r2).The helium target bound states �n(r1; r2) are eigen-funtions of the 2-eletron Hamiltonian,Ht(rr;r2)�n(r1; r2) =�T1 + T2 � 2r1 � 2r2 + 1r>(1; 2)��n(r1; r2)= En�n(r1; r2): (23)The spatial part of these states an be either symmetrior anti-symmetri with respet to interhange of the twoeletron oordinates, orresponding to singlet, sn = 0, ortriplet, sn = 1, spin-oupling of the target eletrons.The initial onditions for determining 	SC are on-tained in the spei�ation of �0: sine the full Hamil-tonian is totally symmetri, the permutational proper-ties of 	SC are set by the initial wave funtion. To on-strut a physial three-eletron initial state, labeled bytarget state n and spin sn and total spin (S = 1=2 orS = 3=2), we an apply the antisymmetrization operatorto the produt of a three-eletron spin state, jS; sni, andan unperturbed spatial funtion,�n;S;sn0 (r1; r2; r3) = A ��n(r1; r2) sin(knr3)pkn jS; sni� :(24)



6For example, the three eletron doublet spin eigenfun-tion (S = 1=2) for a triplet target state (sn = 1) isj12 ; 1i = 1p6(2��� � ���� ���); (25)where we have hosen the projetion mS = 12 . For thefully antisymmetri three-eletron state, the spatial andspin portions of the wave funtion generally do not fator.Having de�ned the unperturbed initial state withEq. (24), we must onstrut a solution of the drivenShr�odinger for the orresponding sattered wave,	n;S;snSC : (E �H)	n;S;snSC = (H �E)�n;S;sn0 (26)In pratie, it is only neessary to solve this equationfor a single arrangement of the eletron oordinates sineany other arrangement an be obtained by an appropri-ate permutation of eletron oordinate labels, ie., we anpropagate an unsymmetri initial state and then on-strut the desired physial state by ombining the solu-tion vetors with di�erent permutations of the oordinateindies. The single arrangement we ompute is(E �H) i(r1; r2; r3) = (H �E)�ni(r1; r2) sin(kir3)pki :(27)The amplitudes for disrete exitation, FS;sf ;sii!f , anthen be onstruted from the quantities:f (1)fi = 2*�nf (r1; r2) sin(kf r3)pkf ����E �H1230 ���� i(r1; r2; r3)+f (2)fi = 2*�nf (r2; r3) sin(kf r1)pkf ����E �H2310 ���� i(r1; r2; r3)+f (3)fi = 2*�nf (r3; r1) sin(kf r2)pkf ����E �H3120 ���� i(r1; r2; r3)+ ;(28)whereH ijk0 = Ht(ri; rj)+Tk. Using Green's identities, asdisussed above, these matrix elements an be onvertedto surfae integrals. For example,f (1)fi = 1pkf ZS ��nf (r1; r2) sin(kfr3)r i(r1; r2; r3)�  i(r1; r2; r3)r�nf (r1; r2) sin(kf r3)� � n̂ dS:(29)These arrangement amplitudes are not entirely indepen-dent. In fat, f (2)fi = �i�ff (3)fi , where �n = (1 � 2sn)

is the parity of target state n. The arrangement am-plitudes are ombined to obtain the physial amplitudesFS;sf ;sii!f . Table I gives expliit formulas for the variousphysial amplitudes in terms of the arrangement ampli-tudes, based on the initial and �nal spin states of thethree eletrons. The physial ross setions for inelastisattering are omputed using�fi = 2S + 12(2si + 1) �4�k2i � ���FS;sf ;sii!f ���2 : (30)jS; sii jS; sf i FS;sf ;sii!f�� 12 ; 0� �� 12 ; 0� 12 h2f (1)fi � f (2)fi � f (3)fi i�� 12 ; 0� �� 12 ; 1� p32 hf (3)fi � f (2)fi i�� 12 ; 1� �� 12 ; 0� p32 hf (2)fi � f (3)fi i�� 12 ; 1� �� 12 ; 1� 12 h2f (1)fi � f (2)fi � f (3)fi i�� 32 ; 1� �� 32 ; 1� f (1)fi + f (2)fi + f (3)fiTABLE I: Expressions for sattering and ionization ampli-tudes in terms of individual arrangement amplitudes.For the single ionization amplitudes, similar onsider-ations apply. Following the disussion of Se. II B, webegin by using asymptoti projetion to isolate the ion-ization portion of the sattered wave for a single arrange-ment: ioni (r1; r2; r3) = i(r1; r2; r3)�Xn 1pkn �f (1)ni �n(r1; r2)eiknr3+ f (2)ni �n(r2; r3)eiknr1+ f (3)ni �n(r3; r1)eiknr2� : (31)Note that the sattered wave orresponding to a sin-gle initial arrangement has asymptoti two-body hannelomponents in all arrangements, eah of whih must beremoved in omputing  ioni .For the single ionization amplitudes, the �nal statesare assembled from produts of a He+ orbital 'n and twoontinuum distorted waves 'k1 and 'k2 . As in the aseof exitation, we an de�ne di�erent arrangement ampli-tudes from whih the physial ionization amplitudes anbe assembled:



7f (1)fi (k1; k2) = 2 
'n(r1)'k1(r2)'k2 (r3) jE �H0j ioni (r1; r2; r3)�f (2)fi (k1; k2) = 2 
'n(r2)'k1(r3)'k2 (r1) jE �H0j ioni (r1; r2; r3)�f (3)fi (k1; k2) = 2 
'n(r3)'k1(r1)'k2 (r2) jE �H0j ioni (r1; r2; r3)� : (32)
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FIG. 4: Comparison of SDCS for ground-state helium atE = 3 eV omputed with and without the use of distortedwaves and/or asymptoti subtration. Light solid urve:SDCS (divided by 10) obtained with Coulomb funtions andno asymptoti subtration. Dashed urve: SDCS obtainedwith Coulomb funtions and asymptoti subtration. Darksolid urve: SDCS obtained with distorted waves and asymp-toti subtration.at 101 bohr. The full three-dimensional grid thus on-tained 1533=3,581,580 points. We have already notedthat the DVR gives a diagonal representation of all loaloperators. In this ontext, we should point out that anaurate DVR representation of the two-eletron repul-sion operators that appear in Eqs. (22) and (23) requiressome are. These details are fully desribed in ref. [11℄.The time propagation was arried out using the split op-erator and Crank-Niolson shemes previously desribedin setion II A. The wave funtion was evolved in timeto Tmax = 400 a:u with time steps of �t = 0:1 a:u.The amplitudes for exitation and ionization were allassembled from permutations of the appropriate single-arrangement amplitudes, based on �nal and initial sym-metries, as indiated in Table I. These arrangementamplitudes were all evaluated using the surfae integralforms of the amplitude expressions, Eqs. (28, 32). Theedges of the surfae were loated just inside R0 at 100bohr.We have alulated exitation and ionization rosssetions for the S-wave model from both ground- andexited-state, 2 3S and 2 1S, target atoms. The two-eletron target states were always obtained by diagonal-izing the target Hamiltonian given in Eq. (23) using thereal portion of the 2D FEM-DVR basis.Figures 1, 2, and 3 show ross setions starting fromHe 1 1S, 2 3S and 2 1S, respetively, for exitation tostates with priniple quantum number up to n = 3. Wehave also plotted the results of onvergent lose oupling(CCC) alulations [13℄ in those �gures for omparison.In all ases, the agreement between the two methods isgood. This omparison also indiates that, for exitation,the frozen-ore model, whih is used in the CCC alula-tions, and the full model with two ative eletrons used
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FIG. 6: Examples of SDCS �tting at 2:0 eV (left) and 30:0 eV(right) above the �rst IP starting in the 1 1S ground state.Dark urve: quadrati �t of SDCS. Light urve: omputedSDCS.The total ionization ross setions from the di�erentinitial states are all plotted in Fig. 5, along with thefrozen-ore CCC results [13℄. One again, we �nd verygood agreement with the CCC results. There is a slightdisrepany in the ase of ionization starting in the 2 1Sstate, where the present total ross setions peak atslightly smaller values than the CCC results.The single di�erential ross setions o�er the most de-tailed information about breakup in the S-wave modeland are the most diÆult quantities to aurately alu-late. Even with asymptoti subtration and the properlyhosen distorted waves there are small osillations in theross setions, whih arise from inomplete eliminationof exited singlet two-body states, whih are not om-pletely orthogonal to the distorted wave. Fig. 6 showsthe SDCS from the ground-state at total energies of 2and 30 eV, to show the typial behavior at low and highenergies. We found that the SDCS in all ases ould bewell �t with a quadrati funtion whose parameters areuniquely determined by a least-squares �t that gives thesame integrated ross setions as the unsmoothed data.The SDCS values presented in Figs. 7-10 are all obtained



10from the �tted quadrati urves.Interestingly, the SDCS for the high spin, S = 3=2,ase, shown in Fig. 9, required no smoothing at all. Thesattered waves whih determine these ross setions, bysymmetry, an only ontain ontributions from triplettwo-body hannels. The triplet distorted waves we em-ploy remove these ontributions e�etively exatly. Weveri�ed that for these ases, idential results are obtainedwithout asymptoti subtration. We note that the high-spin SDCSs are zero at equal-energy sharing, whih isalso required by symmetry.Di�erenes between the present S-wave results and thefrozen-ore CCC treatment beome more apparent whenwe ompare SDCS values. In the CCC study, SDCSresults are only reported for equal-energy sharing, forwhih ase CCC is purported to provide onvergent re-sults [13, 22℄. In Fig.11, the SDCS, at equal-energy shar-ing, are plotted as a funtion of total energy. Sine Plot-tke et al. de�ne the total ross setion as the integralof the SDCS from zero to E=2, we have multiplied ourresults by two for the omparison. Also, the CCC resultswere published as separate singlet and triplet ontribu-tions, not as their sum. However, the triplet ontributionto the SDCS at equal energy sharing should, formally, be3 times the singlet ontribution. Thus to ompare withour results, we have multiplied the CCC singlet ontri-butions by 4, and the triplet ontributions by 4=3. Whilethe present results and the CCC values are in good agree-ment above 10 eV, the CCC SDCS are notieably smallerat lower energies. IV. DISCUSSIONThis study represents a �rst step in applying the ECSformalism to treat eletron ollisions with a target thathas two ative eletrons. The S-wave model, whih sim-pli�es the full e�-He problem by treating only states withzero angular momentum, is nevertheless a true Coulombfour-body problem and, when treated in full dimension-ality, displays muh of the omplexity of the full problem.By employing a time-dependent formulation of exterioromplex saling, we an still obtain a numerial repre-

sentation of the time-independent sattered wave whileavoiding the problem of solving large systems of omplexlinear equations. There is therefore every reason to be-lieve that the same numerial tehniques we have used inthis study ould be suessfully applied to the full e�-Heproblem.The amplitudes for disrete exitation are easily om-puted from the numerially obtained sattered waves andare found to give ross setions that agree well with pre-vious CCC studies that employed a frozen-ore model.The alulation of aurate ionization amplitudes, on theother hand, poses signi�ant formal and omputationaldiÆulties that are not enountered when dealing withsingle ative eletron targets. Our approah to this prob-lem has been to ombine \asymptoti subtration" alongwith a judiious hoie of ontinuum distorted waves tominimize the ontamination of the ionization amplitudesby disrete two-body hannels. This strategy was foundto be reasonably suessful in the present ase and shouldalso arry over to the full e-He problem. While the totalross setions for ionization we omputed were found toagree well with the frozen-ore CCC results, there werenotieable di�erenes in the single di�erential ross se-tions, partiularly at low energies. It is not lear whetherthese di�erenes an be attributed to de�ienies in thefrozen-ore model or to onvergene problems in the CCCalulations. AknowledgmentsThe authors aknowledge valuable disussions withWim Vanroose on various numerial aspets of time-propagation. This work was performed under the aus-pies of the US Department of Energy by the Universityof California Lawrene Berkeley National Laboratory un-der Contrat DE-AC03-76SF00098 and was supported bythe U.S. DOE OÆe of Basi Energy Sienes, Divisionof Chemial Sienes. The alulations were arried outat the National Energy Researh Sienti� ComputingCenter at Lawrene Berkeley National Laboratory. DAHaknowledges support from the U.S. DOE ComputationalSiene Graduate Fellowship Program.[1℄ C. W. MCurdy, M. Baertshy, and T. N. Resigno, J.Phys. B XX, xxxx (2004).[2℄ R. K. Peterkop, Opt. Spetros. 13, 87 (1962).[3℄ M. R. H. Rudge and M. J. Seaton, Pr. Roy. Phys. So.283, 262 (1965).[4℄ M. R. H. Rudge, Rev. Mod. Phys. 40, 564 (1968).[5℄ M. S. Pindzola and D. R. Shultz, Phys. Rev. A 53, 1525(1996).[6℄ M. S. Pindzola and F. Robiheaux, Phys. Rev. A 54,2142 (1996).[7℄ L. Malegat, P. Selles, and A. K. Kazansky, Phys. Rev.Lett. 85, 4450 (2000).
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FIG. 7: SDCS for ionization from the 1 1S ground state for various energies above the �rst IP. Left panel, top to bottom: 5.0,4.0, 3.0, 2.0 and 1.0 eV. Right panel, y-axis interept from top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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FIG. 8: SDCS for ionization from the 2 3S ground state for various energies above the �rst IP, with S = 1=2. Left panel, topto bottom: 2.0, 1.0, 3.0, 4.0 and 5.0 eV. Right panel, top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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FIG. 9: SDCS for ionization from the 2 3S ground state for various energies above the �rst IP, with S = 3=2. Left panel, top tobottom: 5.0, 4.0, 3.0, 2.0 and 1.0 eV. Right panel, y-axis interept from top to bottom: 10.0, 15.0, 5.0, 20.0, 25.0 and 30.0 eV
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FIG. 10: SDCS for ionization from the 2 1S ground state for various energies above the �rst IP. Left panel, y-axis intereptfrom top to bottom: 2.0, 1.0, 3.0, 4.0 and 5.0 eV. Right panel, top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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